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In this paper, a flexible edge-preserving regularization algorithm based on the finite element method is
proposed to reconstruct the optical-property images of near-infrared diffuse optical tomography. This
regularization algorithm can easily incorporate with varied weighting functions, such as a generalized
Lorentzian function, an exponential function, or a generalized total variation function. To evaluate the
performance, results obtained from Tikhonov or edge-preserving regularization are compared with each
other. As found, the edge-preserving regularization with the generalized Lorentzian function is more
attractive than that with other functions for the estimation of absorption-coefficient images concerning
functional tomographic images to discover functional information of tested phantoms/tissues. © 2013
Optical Society of America
OCIS codes: 100.3190, 170.3010, 170.6960.

1. Introduction

Advances have beenmade rapidly in various imaging
modalities of optical tomography since computed to-
mography (CT) apparatus was first introduced in the
1970s and related modalities were investigated [1].
Meanwhile, diffuse optical tomography (DOT) pro-
viding functional information related to tissues has
drawn great attention for the last two decades.
However, near-infrared diffuse optical tomography
(NIR DOT) imaging techniques suffer from low
spatial-frequency resolution owing to the diffusive
nature of scattered light. To solve this drawback, it
can be coped with by the help of various reconstruc-
tion methods of NIR DOT. To understand the related
information, readers can refer that the theory of NIR
DOT was thoroughly reviewed [2] as well as edge-

preserving regularization applied in computed ima-
ging was first proposed and investigated in
detail [3].

Some researchers have reported how to design a
weighting function or use multiple weighting func-
tions for processing images. A hybrid model was pro-
posed for variational image restoration using an
alternative diffusion switching a nonquadratic func-
tion with a parameter so as to preserve edges [4].
Based on potential functions with an adaptive rest
condition, a regularization formulation was intro-
duced for inverse problems in computer vision [5].
By considering particular families of dyadic wavelets,
new potential functions were used, thereby preser-
ving and restoring important image features, such as
edges and smooth regions [6]. A deterministic relaxa-
tion algorithm was generalized and introduced for
edge-preserving regularization in linear inverse pro-
blems [7]. A decomposition-enabled edge-preserving
image restoration algorithm was proposed for
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maximizing the likelihood function [8]. To improve
the performance and the convergence speed, an inver-
sion method was developed by constructing a new ob-
jective function with edge-preserving regularization
and a soft constraint [9,10]. An iterative split-
gradient method was applied to confocal microscopy
for investigating the effect of several edge-preserving
priors,whichwas found stable, robust, and tolerant at
various Poisson noise levels [11].

In addition, choosing an appropriate regulariza-
tion parameter is essential for processing. A model
of estimating the parameter was established to bal-
ance a data fidelity term and a regularization term in
the objective function with a corresponding value to
each one of some blocks in an image [12]. A con-
strained optimization approach was studied for the
removal of Poisson noise [13]. For satellite image re-
storation, an edge-preserving regularization model
was applied with a function φ involving two hyper-
parameters estimated by a Markov chain Monte
Carlo maximum-likelihood technique [14].

Furthermore, edge-preserving regularization has
been performed on the following aspects. With edge-
preserving potential functions based on using a
conjugate gradient method, a regularization scheme
was proposed for the reconstruction of the complex
permittivity profile [15]. An edge-preserving and
quadratic regularization function was presented to
solve a Poisson distribution of data-noise problem
[16] and an edge-preserving regularization technique
was used to estimate the discontinuities and decrease
the sensitivity to noise during the reconstruction pro-
cess of the microwave inverse problem [17]. Half-
quadratic edge-preserving image restoration method
was proposed to enhance CT images [18]. A three-
dimensional regularization method was proposed for
positron emission tomography transmission recon-
struction where the objective function incorporates
nonlocal boundary information, thereby minimizing
its space-variant quadratic objective function to up-
date the image estimate [19]. Coupled with an edge-
preserving regularization process, a variational
model was used for image classification [20]. Based
on half-quadratic regularization and complementary
a priori information, an edge-preserving regulariza-
tion method was applied to magnetic induction tomo-
graphy [21]. An edge-preserving deterministic
regularization was presented for image restoration
by minimizing the nonquadratic criterion [22].

Therefore, it can be seen that most edge-
preserving regularization methods were applied to
image restoration or some medical imaging systems
rather than the NIR DOT imaging system. To the
best of our knowledge, we first employed the edge-
preserving regularization in NIR DOT [23]; subse-
quently, the comparison is made between Tikhonov
and edge-preserving regularization with various
weighting functions in this paper. Thus, there are
two algorithms, Tikhonov and edge-preserving regu-
larization; the former is a standard method and the
latter is flexible as it can easily incorporate with

varied weighting functions. The reason of the edge-
preserving regularization applied to NIRDOT is that
its advantage is able to create the edge enhancement
of the reconstructed images with the edge-like
information from the measured signals for image
reconstruction. Our previous research has mainly
discussed the methodology of edge-preserving regu-
larization on NIR DOT; in addition, there remain
some issues to be investigated. Therefore, this paper
aims at further exploring the edge-preserving
regularization algorithm in NIR DOT by comparing
several regularization weighting functions; as a re-
sult, an appropriate weighting function for use is
suggested.

2. Ring-Scanning-Based Imaging System

This section describes the ring-scanning-based ima-
ging system including the image reconstruction algo-
rithm of edge-preserving regularization with varied
regularization weighting functions, a developed
ring-based scanning device, and an optoelectronic
measurement module.

A. Reconstruction Algorithm

An image reconstruction task contains forward mod-
eling and inverse problem. The forward computation
consists in obtaining the photon fluence rate out of a
subject under investigation for a given source, and
the initial-guess (or iterated result) on scattering
and absorption coefficients. The inverse computation
is to compute the scattering and absorption coeffi-
cients for a known light source and measured photon
fluence rate in an iterative manner.

Such a physical process of NIR light illuminating
through a highly-scattering medium can be approxi-
mated by the diffusion equation,

∇ · κ�r�∇Φ�r;ω� −
�
μa�r� −

iω
c

�
Φ�r;ω� � −S�r;ω�;

(1)

where Φ�r;ω� is the photon fluence rate at position r
and ω is the light intensity-modulation frequency,
S�r;ω� is the isotropic source term and c is the speed
of light in tissue, as well as μa and κ denote the optical
absorption and diffusion coefficients, respectively.
For solving Eq. (1), numerical computation based
on the finite element method derived by the Galerkin
weak form of Eq. (1) using a boundary condition,
−κ∇Φ · n̂ � αΦ (flux in fact), can be implemented,
where the solution Φ�r;ω� is approximated by the
piecewise function ϕj at N vertex nodes over the pro-
blem domain Ω, Φ � PN

j�1 Φjϕj�r�. Thus, the follow-
ing equation in a matrix form can be obtained:

AΦ � C; (2)

where
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Aij �
Z
Ω
−κ�r�∇ϕi�r� ·∇ϕj�r�

−

�
μa�r� −

iω
c

�
ϕi�r�ϕj�r�dr

� α

Z
∂Ω

ϕi�r�ϕj�r�dr;

Ci �
Z
Ω
−S�r;ω�ϕi�r�dr: (3)

More details in derivation can be found in [2]. Ob-
viously, the forward solution, Φ, can be evaluated
through Eq. (2). In terms of the physical process,
the fluence rate matrix Φ is quantitatively and qua-
litatively dependent upon the source matrix C and
the optical-property matrix A, respectively, where
the optical-property matrixA is the inertia of the ma-
terial in spite of relating to the wavelength. Partially
differentiating Eq. (2) with ∂∕∂μa and ∂∕∂κ, respec-
tively, yields

∂Φ
∂μa

� −A−1 ∂A
∂μa

Φ� A−1 ∂C
∂μa

∂Φ
∂κ

� −A−1 ∂A
∂κ

Φ� A−1 ∂C
∂κ

: (4)

With an approximation to applying the Taylor ex-
pansion method and ignoring higher-order terms, we
obtain

JΔχ � ΔΦ; (5)

where the Jacobian matrix J denotes the matrix con-
sisting of ∂Φ∕∂μa and ∂Φ∕∂κ, Δχ is the vector com-
posed of Δμa and Δκ, and ΔΦ is the vector with
differences between calculated photon fluence rate
(Φcal:) and measured photon fluence rate (Φmeas:).
Then the elements of the Jacobian matrix can be cal-
culated from Eq. (4).

In an edge-preserving regularization algorithm,
the objective function is composed of a residual term
and a regularization term where a potential function
with edge-preserving properties is introduced into
the regularized term. It is desirable to be able to in-
corporate varied weighting functions into the regu-
larization term to achieve a high-quality result of
NIR DOT. Along with the help of half-quadratic reg-
ularization to simplify the problem of nonlinearity
shown in the original proposed objective function,
the transformed objective function for NIR DOT
can then be written [3,23] as Eq. (6),

Q�
Ep�Δχ ; b� � ‖JΔχ − ΔΦ‖

2

2

� λ2
X
l

X
k

f�bl�k�DlΔχ �2k � φ��bl�k�g;

(6)

where the auxiliary variable b � �b1; b2;…; bl;…� is
introduced by half-quadratic regularization and cap-
able of making Eq. (6) linear inΔχ when performing a
minimization task, and φ originally determines the
regularization imposed on every value of the first-
order difference DlΔχ , which is used to detect the
discontinuities of the update vector Δχ in a specific
direction l. In the subsequent minimization proce-
dure, Δχ n is fixed at iteration step n� 1 and bn�1

is computed using the following expression derived
from the theorem proved in [3], i.e.,

�bn�1
l �k � argmin

�bl�k
fQ�

Ep�Δχn; �bl�k�g �
φ0��DlΔχn�k�
2�DlΔχn�k

:

(7)

Then the new update vectorΔχn�1 is obtained from
the minimization of Q�

Ep�Δχ ; bn�1� such that

Δχn�1 � argmin
Δχ

fQ�
Ep�Δχ ; bn�1�g

� �JTJ� λ2Δn�1
Ep �−1JTΔΦ; (8)

where Δn�1
Ep � P

lD
T
l B

n�1
l Dl and Bn�1

l � diag��bn�1
l �k�.

The optical parameters are predicted iteratively with
using the update equations, i.e., Eqs. (7) and (8),
alternately until the stopping criteria are met.

B. Varied Regularization Weighting Functions

To investigate the effect of the edge-preserving
weighting function for NIR DOT, we employed varied
functions for φ0�t�∕2t in Eq. (7). Teboul et al. [24] had
summarized some commonly used edge-preserving
weighting functions. By investigating those com-
monly used weighting functions, three functions
were generalized and adopted in this study: a gener-
alized Lorentzian (GL) function �γ2�m∕�γ2 � t2�m, an
exponential (EXP) function e−t

2 , and a generalized to-
tal variation (GTV) function �α∕2�tα−2. Hence, three
weighting functions were separately used in both si-
mulation and experimental data.

C. Ring-Based Scanning Device and Optoelectronic
Measurement Module

In addition to the reconstruction algorithm of edge-
preserving regularization, a ring-scanning-based
measurement system of NIR DOT was constructed
by using a single source and a detector that can se-
parately rotate around the circumference of a tested
phantom with a high degree of spatial flexibility.
Furthermore, the optoelectronic measurement mod-
ule was operated in the frequency domain to acquire
the attenuated intensity and delayed phase of diffuse
NIR light. The architecture of this frequency domain
measurement module is shown in Fig. 1.

First of all, DC power supply provides a static vol-
tage modulated with f MHz (up to 100 MHz) from
channel one (CH1) of a function generator by cou-
pling with a bias Tee, thereby leading a laser diode
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to output an oscillating NIR light (830 nm) power.
Subsequently, NIR light is transmitted to an optical
fiber for each source position chosen with a motor of
predefined parameters. Then, the source light passes
through the tested phantom and the diffuse light
emitted from the phantom at each detection is ac-
quired with a liquid light guide to a photomultiplier
tube (PMT); prior to the PMT, the diffuse light passes
through an adaptive neutral density filter and an in-
frared filter in order to attenuate optical power and
filter out other wavelengths, respectively. With a
mixer, the measured signal is mixing with the other
signal f � Δf MHz from channel two (CH2) of the
function generator; following that, the amplitude
and phase of the measured signal are extracted in
the low-frequency region with a low-pass filter. Simi-
larly, a low-frequency referenced signal of amplitude
and phase is obtained by mixing original signals
(f MHz and f � Δf MHz) with another pair of a mixer
and a low-pass filter. Finally, the measured and the
reference signals are acquired and recorded with a
data acquisition board, thereby separately obtaining
amplitude and phase information of the measured
and the reference light. For acquiring experimental
data, this measurement module was built with a sin-
gle rotating source by a detector and can be operated
at up to 100MHz; measurements were recorded at 15
detections for a single source position and repeated
in succession until data from 16 equivalent source
positions, which yielded a total of 16 × 15 separate
amplitude-attenuation and phase-delay observa-
tions for each image reconstruction.

3. Results and Discussion

In this section, the proposed flexible edge-preserving
reconstruction algorithm is evaluated for varied
weighting functions. An inhouse-coded reconstruc-
tion program named as NIR.FD_PC and a ring-based
scanning measuring device operated on the fre-
quency domain were implemented in the laboratory.

A. Evaluation Method

To obtain further quantitative information about
the reconstructed images in these simulations, two
measures [25] (contrast resolution and size resolu-
tion) were used over the region of interest. To define
the contrast and size resolution in the one-
dimensional (1D) and two-dimensional (2D) domains,
the idea originates from precision and density/
saturation, respectively, of which the advantage is
easy to be implemented. The contrast resolution
R1D;2D

cont: is defined to evaluate the resolution on the
contrast of optical property values of the inclusion
relative to the background, shown as

R1D;2D
contrast �

�
maxinclusion∕minbackground

�
reconstruction�

maxinclusion∕minbackground
�
Exact

�9�

and

R1D;2D
contrast � 2 −R1D;2D

contrast; if 1 < R1D;2D
contrast < 2;

where max and min denote the average of maxima
and minima over all the selected inclusion or back-
ground regions, respectively. The size resolution is de-
signed to evaluate the resolution on the size over all
inclusions as below:

R1D;2D
size �

��
1−

�MSEinclusion�Recon:2:Exact
�MSEinclusion�Exact:2:baseline

�
R1D;2D

contrast

�1∕2
;

(10)

wheremean square error (MSE) is calculated over the
selected inclusion region between the exact value of
the inclusion and the reconstruction or baseline value
and a baseline value is used with the same as the
background optical coefficients. It is noted that the
size resolution in Eq. (10) includes the contrast reso-
lution in order to prevent from size overestimation.

Fig. 1. (Color online) Architecture of the frequency domain optoelectronic measurement module associated with a ring-based scanning
device.
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B. Numerical Simulation

In the simulation,we considered somepractical situa-
tions.The simulatedphantomhasan80mmdiameter
background (μa � 0.006 mm−1 and μ0s � 0.6 mm−1)
with a 10 mm diameter inclusion at a 15 mm off-
center along the 45° axis, which has an absorption
contrast of 2.5∶1 and a scattering contrast of 1.4∶1 le-
vel between the inclusion and the background. Of
much more importance is how the weighting func-
tions behave in the presence of uniformly distributed
random variation in the phantom where the absorp-
tion and the reduced scattering coefficients (μa and μ0s)
are ranging up to a 	80% variation relative to the
mean value of background or inclusion. The modula-
tion frequency was selected to be 20 MHz. For all the
reconstruction cases shown in this study, the finite-
element mesh consisting of 4225 nodes and 8192 tri-
angle elements was used to generate simulated data
and a second mesh consisting of 871 nodes and 1536
triangle elements was adopted in the reconstruction
procedure [23]. Moreover, no more than 30 iteration
steps were used and each iteration step took compu-
tation time about 10 s.

Figure 2 presents image reconstructions of the si-
mulated phantom having no variation, obtained from
varied weighting functions. Considerable improve-
ment can be observed in the reconstructed images
when Lorentzian, exponential, or total variation
function is invoked compared with Tikhonov regular-
ization where much more ringing artifact was,
however, produced in the absorption or reduced scat-
tering image for reconstruction using exponential or
total variation function. In edge-preserving regulari-
zation, the weighting function satisfies the condition
that it is strictly decreasing, i.e., an edge, featuring
with a large gradient value, is preserved by assigning
a small weight value [3]. Therefore, in order to mini-
mize the ringingartifactswhenusingedge-preserving

regularization, one can appropriately choose the de-
creasing rate of the weighting function. In terms of
this, the generalized Lorentzian weighting function
proposed in this study appears to have more suitable
decreasing rate compared with exponential and
generalized total variation weighting functions. To
provide a more quantitative assessment of these
images, Fig. 3 corresponding to Fig. 2 is included, in
which the reconstructed optical-property distribu-
tions compared with the exact value are displayed
along a 1D circular profile through the center of the
inclusion region. The comparative improvement of
the absorption or the reduced scattering image is ap-
parent for varied weighting functions.

To simulate the variations of optical coefficients in
the breast, other cases have been performed and in-
vestigated for the edge-preserving regularization re-
spectively incorporated with varied weighting
functions under the condition of uniformly distribu-
ted variation of 20%, 40%, 60%, and 80% in exact op-
tical coefficient distribution μexact. Those uniformly
distributed random variations were added over the
whole imaging domain; the varied optical coefficient
distribution μvaried is generated by the formula
μvaried � μexact � p × μexact × n, where n is uniformly
distributed random number between �−1; 1�, and p
is set to be 20%, 40%, 60%, and 80% in this study.
As found in the simulation, the improvement of
the reconstructions by the incorporation of the
weighting function is obvious over that achieved with
Tikhonov regularization; it is shown that even in the
presence of strong random variation the proposed al-
gorithm is still able to recover the main features of
the phantom.

As can be seen in Table 1 or Fig. 4, the edge-
preserving regularization with the generalized
Lorentzian function exhibits a quality near true va-
lue of optical property especially in absorption rather

Fig. 2. (Color online) Demonstration of reconstructed absorption and reduced scattering images of a breast-like phantom from simulated
data: (a) designated distribution of absorption coefficient with no variation and the reconstructed absorption images using (b) Tikhonov,
(c) generalized Lorentzian function, (d) exponential function, and (e) generalized total variation function as well as (f) designated distribu-
tion of reduced scattering coefficient with no variation and the reconstructed reduced scattering images using (g) Tikhonov, (h) generalized
Lorentzian function, (i) exponential function, and (j) generalized total variation function.
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than other approaches, and that with the generalized
total variation function shows a better-quality recon-
struction in the reduced scattering property.

C. Experimental Trials

Our proposed regularization method with dif-
ferent weighting functions was also justified using

experimental data under the conditions of both mea-
surement noise and slight optical coefficients varia-
tion in the phantom. A 50 mm diameter cylindrical
phantom was made for the reconstructions using ex-
perimental data, of which the μa � 0.006 mm−1 and
μ0s � 0.6 mm−1 were composed of a fat emulsion sus-
pension (Lipovenoes) as a scattering medium and ink

Fig. 3. (Color online) 1D circular profiles corresponding to Fig. 2.

Fig. 4. (Color online) Comparison of contrast and size resolutions of simulation cases for Tikhonov and edge-preserving regularization
corresponding to Table 1: 1D cases, (a) contrast resolution of μa, (b) size resolution of μa, (c) contrast resolution of μ0s, (d) size resolution of μ0s,
and 2D cases, (e) contrast resolution of μa, (f) size resolution of μa, (g) contrast resolution of μ0s, (h) size resolution of μ0s.
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added as an absorber. In the phantom, there was a
10 mm diameter inclusion with 4∶1 absorption and
reduced scattering contrast and placed along 45°.
Figure 5 displays the reconstructed optical-property
images; 1D circular profiles of Fig. 5 are shown as
Fig. 6 for a detailed comparison of the reconstruc-
tions. Similar to the reconstructions with simulated
data, the results using the generalized Lorentzian
and the generalized total variation are correspond-
ingly superior for the characterization of absorption
coefficients and reduced scattering coefficients. Note
that the results using Tikhonov or an exponential
weighting function seem well reconstructed in ab-
sorption images; actually, the absorption coefficients
were overestimated. For further inspection, the re-
constructed optical images of phantom targets pre-
sented in Fig. 5 have fewer artifacts in comparison
with the reconstructed images of simulated data
with no variation shown in Fig. 2. The reason is

described as follows. Prior to applying the measured
heterogeneous data Φmeasured

hetero for image reconstruc-
tion, we performed calibrations using the measured
and computed homogeneous data, Φmeasured

homo and
Φcomputed

homo , respectively. The computed homogeneous
data were obtained from a homogeneous phantom
with assigned background optical-property coeffi-
cients. The calibration was carried out by applying
the following calibration equation to the measured
heterogeneous data:

Φcomputed
hetero � Φmeasured

hetero
Φcomputed

homo

Φmeasured
homo

: (11)

This procedure estimates the unknown scaling
and coupling coefficients between the measurement
and computation, and thus the system-based offset

Table 1. Evaluation on Contrast and Size Resolutions of Simulation Cases for Tikhonov and Edge Preserving Regularization

μa μ0s

TR GL EXP GTV TR GL EXP GTV

Contrast Size Contrast Size Contrast Size Contrast Size Contrast Size Contrast Size Contrast Size Contrast Size

1D
Variation Free 0.58 0.56 0.66 0.71 0.68 0.67 0.56 0.52 0.77 0.88 0.82 0.90 0.83 0.91 0.89 0.94
Variation 20% 0.56 0.54 0.63 0.68 0.65 0.62 0.53 0.48 0.79 0.88 0.84 0.91 0.85 0.92 0.91 0.95
Variation 40% 0.54 0.50 0.60 0.62 0.62 0.54 0.51 0.44 0.81 0.89 0.87 0.92 0.87 0.93 0.92 0.95
Variation 60% 0.51 0.45 0.56 0.54 0.58 0.44 0.48 0.40 0.82 0.89 0.89 0.93 0.90 0.93 0.94 0.95
Variation 80% 0.49 0.40 0.52 0.45 0.54 0.33 0.46 0.36 0.84 0.89 0.91 0.93 0.91 0.93 0.95 0.95
Average 0.54 0.49 0.60 0.60 0.61 0.52 0.51 0.44 0.81 0.89 0.87 0.92 0.87 0.92 0.92 0.95
2D
Variation Free 0.58 0.55 0.67 0.69 0.63 0.63 0.55 0.51 0.79 0.88 0.84 0.91 0.85 0.92 0.91 0.95
Variation 20% 0.57 0.54 0.67 0.68 0.62 0.60 0.54 0.49 0.83 0.91 0.88 0.94 0.89 0.94 0.96 0.98
Variation 40% 0.57 0.51 0.65 0.63 0.58 0.53 0.54 0.46 0.87 0.93 0.93 0.96 0.94 0.96 0.99 0.99
Variation 60% 0.57 0.47 0.63 0.55 0.53 0.42 0.53 0.42 0.92 0.94 0.98 0.98 0.97 0.97 0.97 0.98
Variation 80% 0.56 0.42 0.59 0.47 0.47 0.29 0.53 0.39 0.95 0.95 0.99 0.98 0.96 0.96 0.96 0.96
Average 0.57 0.50 0.64 0.60 0.56 0.49 0.54 0.45 0.87 0.92 0.93 0.95 0.92 0.95 0.96 0.97

Fig. 5. (Color online) Demonstration of reconstructed absorption and reduced scattering images of a breast-like phantom from experi-
mental data: (a) phantom with designated absorption properties and the reconstructed absorption images using (b) Tikhonov, (c) general-
ized Lorentzian function, (d) exponential function, and (e) generalized total variation function as well as (f) phantom with designated
reduced scattering properties and the reconstructed reduced scattering images using (g) Tikhonov, (h) generalized Lorentzian function,
(i) exponential function, and (j) generalized total variation function.
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resulting from measured data can be removed.
Because of this calibration, the artifacts resulted
in the reconstructed images from measured data
can be significantly reduced as compared to those re-
constructed from simulated data. In other words, ar-
tifacts in the simulation arise from the mismatch
between forward and inverse meshes without further
calibration.

As to simulate different cross sections of breast,
the following experimental phantom with a diameter
of 80 mm was studied. The phantom with two
inclusions was imaged at different modulated lights
of 20, 50, and 70 MHz. A Lipovenoes-and-ink solu-
tion was made for the phantom background with
two 10 mm diameter and 3∶1 absorption and
reduced scattering contrast cylindrical rods placed

Fig. 6. (Color online) 1D circular profiles corresponding to Fig. 5.

Fig. 7. (Color online) Comparison of contrast and size resolutions of experiment cases for Tikhonov and edge-preserving regularization
corresponding to Table 2: 1D cases, (a) contrast resolution of μa, (b) size resolution of μa, (c) contrast resolution of μ0s, (d) size resolution of μ0s,
and 2D cases, (e) contrast resolution of μa, (f) size resolution of μa, (g) contrast resolution of μ0s, (h) size resolution of μ0s.
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along 180°	 45° in the interior. Likewise, Table 2
and Fig. 7 show the quantitative evaluation of
experimental examples. As shown, a same remark
can be made; i.e., the edge-preserving regularization
with the generalized Lorentzian function and the
generalized total variation function demonstrate a
superior estimation in the absorption and the re-
duced scattering property, respectively.

As can be seen in simulation cases (Table 1), the
regularization with the generalized Lorentzian func-
tion for absorption-coefficient images basically pos-
sesses the highest average values up to 0.64 and 0.60
in contrast and size resolution, respectively, and the
regularization with the generalized total variation
function for reduced-scattering-coefficient images
has the highest average values up to 0.96 and 0.97;
for a similar comparison among experimental cases
(Table 2), the former, 0.84 and 0.79, as well as the
latter, 0.41 and 0.63. Even though the regularization
with the generalized total variation function per-
forms well in the reduced-scattering-coefficient
images, the performance of the regularization with
the generalized Lorentzian function is next to that
with the generalized total variation function.

With the multiple wavelengths, as known, the con-
centrations of the three chromophores (oxyhemoglo-
bin, deoxyhemoglobin, and water) can be estimated
from absorption coefficients whereas the spectral
character of the reduced scattering coefficient pro-
vides information about the structural composition
of the tissue, which depend on scatter size and num-
ber density associated with age and radiographic
density. Concerning functional tomographic images,
it is suggested that using the edge-preserving regu-
larization associated with the generalized Lorent-
zian function as a weighting function is the most
attractive compared with other functions for the es-
timation of absorption-coefficient images from which
functional information like oxyhemoglobin and deox-
yhemoglobin concentration can be further character-
ized with a spectral prior.

4. Conclusion

The significance of this work is important for the
field of NIR DOT. The advantages of the edge-
preserving regularization with a weighting function
penalizing the objective function are: (1) flexibility: a
flexible framework to incorporate varied weighting
functions as required, (2) easy implementation: the
use of any weighting function is to simply replace
φ0�t�∕2t in Eq. (7), and (3) effectiveness: the weighting
function used is able to enhance the difference be-
tween the inclusion and background. As shown in
previous sections, this framework enables us to im-
pose an appropriate function for estimating images
of the absorption and the reduced scattering coeffi-
cients, and to obtain a better-quality result rather
than the optical properties derived from a rigid
algorithm. Our aim is not to provide a rigorous com-
parison between these weighting functions, and in
practice this would require more experiments, but
to give some indications about their behavior. Even
so, relative variation up to 80% was considered for
numerical simulations as well as varied intensity-
modulation lights and cross sections were tested
for experiments; results show the proposed algo-
rithm effective, i.e., the inclusions are not buried
by optical-coefficient variation or because of low
modulated frequency.

Furthermore, a perspective of this work is the
quantitative comparison between the proposed edge-
preserving and Tikhonov reconstruction algorithms
in both terms of 1D and 2D in quality. As demon-
strated, the improvement to images can be achieved
when edge-preserving regularization is used for the
optical-property reconstruction. Based on the view
point of functional images, we suggest that an appro-
priate choice is to use the edge-preserving regulariza-
tion with the generalized Lorentzian weighting
function for optical-coefficient image reconstruction,
of which the contrast and size resolution can be up
to 0.84, 0.79 for absorption and 0.41, 0.63 for the
reduced-scattering coefficient in experimental cases.

Table 2. Evaluation on Contrast and Size Resolutions of Experiment Cases for Tikhonov and Edge-Preserving Regularization

μa μ0s

TR GL EXP GTV TR GL EXP GTV

Contrast Size Contrast Size Contrast Size Contrast Size Contrast Size Contrast Size Contrast Size Contrast Size

1D
20 MHz
(Phantom 50 mm)

0.87 0.81 0.96 0.83 0.60 0.62 0.78 0.74 0.28 0.51 0.40 0.61 0.33 0.55 0.45 0.65

20 MHz 0.75 0.78 0.88 0.86 0.87 0.85 0.72 0.72 0.37 0.59 0.41 0.63 0.41 0.63 0.40 0.61
50 MHz 0.71 0.73 0.73 0.79 0.73 0.79 0.62 0.65 0.37 0.59 0.44 0.65 0.44 0.65 0.41 0.62
70 MHz 0.91 0.88 0.91 0.91 0.90 0.91 0.87 0.87 0.39 0.61 0.48 0.68 0.48 0.68 0.43 0.64
Average 0.81 0.80 0.87 0.85 0.78 0.79 0.75 0.75 0.35 0.58 0.43 0.64 0.41 0.63 0.42 0.63
2D
20 MHz
(Phantom 50 mm)

0.79 0.75 0.92 0.77 0.35 0.47 0.84 0.73 0.28 0.51 0.40 0.62 0.33 0.56 0.47 0.66

20 MHz 0.70 0.72 0.89 0.83 0.88 0.82 0.70 0.70 0.37 0.59 0.41 0.63 0.41 0.63 0.39 0.61
50 MHz 0.64 0.66 0.70 0.72 0.70 0.72 0.61 0.62 0.37 0.59 0.39 0.61 0.39 0.61 0.38 0.60
70 MHz 0.80 0.79 0.85 0.85 0.85 0.85 0.83 0.81 0.39 0.60 0.45 0.66 0.45 0.65 0.41 0.63
Average 0.73 0.73 0.84 0.79 0.69 0.72 0.75 0.71 0.35 0.57 0.41 0.63 0.40 0.61 0.41 0.63
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